skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1840937

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ALICE Collaboration reports measurements of the large relative transverse momentum ( k T ) component of jet substructure in p p and Pb-Pb collisions at center-of-mass energy per nucleon pair s NN = 5.02 TeV . Enhancement in the yield of such large- k T emissions in head-on Pb-Pb collisions is predicted to arise from partonic scattering with quasiparticles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti- k T algorithm with resolution parameter R = 0.2 in the transverse-momentum interval 60 < p T , ch , jet < 80 GeV / c . The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb-Pb and p p collisions shows medium-induced narrowing, corresponding to yield suppression of high- k T splittings, in contrast to the expectation of yield enhancement due to quasiparticle scattering. The measurements are compared to theoretical model calculations incorporating jet modification due to jet-medium interactions (“jet quenching”), both with and without quasiparticle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. The production yields of the orbitally excited charm-strange mesons D s 1 ( 1 + ) ( 2536 ) + and D s 2 * ( 2 + ) ( 2573 ) + were measured for the first time in proton-proton (pp) collisions at a center-of-mass energy of s = 13 TeV with the ALICE experiment at the LHC. The D s 1 + and D s 2 * + mesons were measured at midrapidity ( | y | < 0.5 ) in minimum-bias and high-multiplicity pp collisions in the transverse-momentum interval 2 < p T < 24 GeV / c . Their production yields relative to the D s + ground-state yield were found to be compatible between minimum-bias and high-multiplicity collisions, as well as with previous measurements in e ± p and e + e collisions. The measured D s 1 + / D s + and D s 2 * + / D s + yield ratios are described by statistical hadronization models and can be used to tune the parameters governing the production of excited charm-strange hadrons in Monte Carlo generators, such as 8. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Abstract The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($$p_{\textrm{T}}^{\gamma }$$ p T γ ), in Pb–Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  TeV. The photon transverse momentum range is between 10–14 and 40–140 GeV/$$c$$ c , depending on the collision system and on the Pb–Pb centrality class. The result extends to lower$$p_{\textrm{T}}^{\gamma }$$ p T γ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is$$|\eta ^{\gamma } | <0.67$$ | η γ | < 0.67 . The isolation selection is based on a charged particle isolation momentum threshold$$p_{\textrm{T}}^\mathrm{iso,~ch} = 1.5$$ p T iso , ch = 1.5  GeV/$$c$$ c within a cone of radii$$R=0.2$$ R = 0.2 and 0.4. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb–Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$$^{0}$$ 0 bosons from the CMS experiment, which are all found to be in agreement. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. This paper reports the first measurement of the transverse momentum ( p T ) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at s = 13 TeV . Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, 2.8 < η < 5.1 and 3.7 < η < 1.7 . According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger p T due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to p T = 20 GeV / c . The event selection requires at least one charged particle produced in the pseudorapidity interval | η | < 1 . The measured p T distributions, average p T , kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using 8 based on color strings and EPOS LHC. The modification of the p T -spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate p T ( 2 < p T < 8 GeV / c ), and approaches the vicinity of unity at higher p T . The results are qualitatively described by , and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator. © 2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons Ξ and Ξ ¯ + and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p-Pb, and Pb-Pb collisions at a center-of-mass energy per nucleon pair s NN = 5.02 TeV . The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data. © 2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. First measurements of hadron- Λ ( h Λ ) azimuthal angular correlations in p -Pb collisions at s N N   = 5.02  TeV using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate the production of associated Λ baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near side), those produced in the opposite direction (away side), and those whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated Λ yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle p T and event multiplicity. Comparisons with the event generator and previous measurements of the ϕ ( 1020 ) meson are also made. The final results indicate that strangeness production in the highest multiplicity p -Pb collisions is enhanced relative to low multiplicity collisions in both the jetlike regions and the underlying event. The production of Λ relative to charged hadrons is also enhanced in the underlying event when compared to the jetlike regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event. ©2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  7. This work aims to differentiate strangeness produced from hard processes (jetlike) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron ( h ) acting as a jet proxy and a produced strange hadron [ ϕ ( 1020 ) meson]. Measuring h ϕ correlations at midrapidity in p -Pb collisions at s N N = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jetlike and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolutions of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jets are studied separately, allowing for the characterization of two distinct jetlike production regimes. Furthermore, the h ϕ correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between h ϕ and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the ϕ / h ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total ϕ ( 1020 ) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event. ©2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. Abstract The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton–proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at center-of-mass energy$$\sqrt{s}$$ s = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region ($$|\eta | < 0.9$$ | η | < 0.9 ) using the sequential recombination anti-$$k_{\textrm{T}}$$ k T algorithm with jet resolution parametersR= 0.2, 0.3, and 0.4 for the transverse momentum ($$p_\textrm{T}$$ p T ) interval 5–110 GeV/c. The high-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet$$p_\textrm{T}$$ p T in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation function variables$$z^{\textrm{ch}}$$ z ch and$$\xi ^{\textrm{ch}}$$ ξ ch are measured for different jet-$$p_\textrm{T}$$ p T intervals. Jet-$$p_\textrm{T}$$ p T independent fragmentation of leading jets is observed for wider jets except at high- and low-$$z^{\textrm{ch}}$$ z ch values. The observed “hump-backed plateau” structure in the$$\xi ^{\textrm{ch}}$$ ξ ch distribution indicates suppression of low-$$p_\textrm{T}$$ p T particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-$$z^{\textrm{ch}}$$ z ch particles accompanied by a suppression of high-$$z^{\textrm{ch}}$$ z ch particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-$$p_\textrm{T}$$ p T jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet$$p_\textrm{T}$$ p T . These measurements provide important constraints to models of jet fragmentation. 
    more » « less
  9. The two-particle momentum correlation functions between charm mesons ( D * ± and D ± ) and charged light-flavor mesons ( π ± and K ± ) in all charge combinations are measured for the first time by the ALICE Collaboration in high-multiplicity proton–proton collisions at a center-of-mass energy of s = 13 TeV . For DK and D * K pairs, the experimental results are in agreement with theoretical predictions of the residual strong interaction based on quantum chromodynamics calculations on the lattice and chiral effective field theory. In the case of D π and D * π pairs, tension between the calculations including strong interactions and the measurement is observed. For all particle pairs, the data can be adequately described by Coulomb interaction only, indicating a shallow interaction between charm and light-flavor mesons. Finally, the scattering lengths governing the residual strong interaction of the D π and D * π systems are determined by fitting the experimental correlation functions with a model that employs a Gaussian potential. The extracted values are small and compatible with zero. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  10. The inclusive production of the charm-strange baryon Ω c 0 is measured for the first time via its semileptonic decay into Ω e + ν e at midrapidity ( | y | < 0.8 ) in proton-proton (pp) collisions at the center-of-mass energy s = 13 TeV with the ALICE detector at the LHC. The transverse momentum ( p T ) differential cross section multiplied by the branching ratio is presented in the interval 2 < p T < 12 GeV / c . The branching-fraction ratio BR ( Ω c 0 Ω e + ν e ) / BR ( Ω c 0 Ω π + ) is measured to be 1.12 ± 0.22 (stat) ± 0.27 (syst). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less